I nt ernet Engi neering Task Force (I ETF) T. Tal pey

Request for Comments: 5666 Unaffiliated
Cat egory: Standards Track B. Cal | aghan
| SSN: 2070-1721 Appl e

January 2010

Renmote Direct Menory Access Transport for Renote Procedure Call
Abstr act

Thi s docunent describes a protocol providing Renote Direct Menory
Access (RDMA) as a new transport for Renmote Procedure Call (RPC)
The RDMA transport binding conveys the benefits of efficient, bulk-
data transport over high-speed networks, while providing for m ninma
change to RPC applications and with no required revision of the
application RPC protocol, or the RPC protocol itself.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc5666

Copyright Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wthout warranty as
described in the Sinplified BSD License.

Tal pey & Cal | aghan St andards Track [Page 1]

RFC 5666 RDVA Transport for RPC January 2010

This docunent nay contain material from | ETF Docunents or |ETF
Contributions published or nmade publicly avail abl e before Novenber

10,

2008. The person(s) controlling the copyright in some of this

materi al may not have granted the I ETF Trust the right to all ow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format

it

for publication as an RFC or to translate it into | anguages ot her

than Engli sh.

Tabl e
1

2.
3.

10.
11.
12.
13.
14.

of Contents
Introducti ON 3
1.1. Requirenents Languaget 4
Abstract RDMA Requi rementS 4
Protocol Qutline e 5
3.1, Short MESSaAgES ..ttt e 6
3.2, Data ChUNKS e 6
3.3. Flow Control 7
3.4. XDR Encoding with Chunks i 8
3.5. XDR Decoding with Read Chunks 11
3.6. XDR Decoding with Wite Chunks 12
3.7. XDR Roundup and Chunks 13
3.8. RPC Call and Reply e 14
3.9, Padding 17
RPC RDMA Message Layout e e 18
4.1. RPC-over-RDVA Header 18
4.2. RPC-over-RDVA Header Errorsc.ouiiiiinniineenin.. 20
4.3. XDR Language DescCriptiony 20
LONg MBS SagES . . . it 22
5.1. Message as an RDMA Read Chunk 23
5.2. RDVA Wite of Long Replies (Reply Chunks) 24
Connection Configuration Protocol 25
6.1. Initial Connection State 26
6.2. Protocol DescCription 26
Menmory Registration Overhead 28
Errors and Error ReCOVEIY e 28
Node AddresSi NG 28
RPC Bi Ndi NGo 29
Security Considerati oOns 30
IANA Considerati ONSt 31
Acknow edgment S 32
Ref erences 33
14.1. Normative References 33
14.2. Informative References i, 33

Tal pey & Cal | aghan St andards Track [Page 2]

RFC 5666 RDVA Transport for RPC January 2010

1

I ntroduction

Renmote Direct Menory Access (RDMA) [RFC5040, RFC5041], [IB] is a
techni que for efficient novenent of data between end nodes, which
becones increasingly conpelling over high-speed transports. By
directing data into destination buffers as it is sent on a network,
and placing it via direct nenory access by hardware, the double
benefit of faster transfers and reduced host overhead is obtained.

Open Network Conputing Renote Procedure Call (ONC RPC, or sinply,

RPC) [RFC5531] is a renote procedure call protocol that has been run
over a variety of transports. Most RPC inplenentations today use UDP
or TCP. RPC nessages are defined in terns of an eXternal Data
Representati on (XDR) [RFC4506], which provides a canonical data
representation across a variety of host architectures. An XDR data
streamis conveyed differently on each type of transport. On UDP
RPC nessages are encapsul ated i nside datagrans, while on a TCP byte
stream RPC nessages are delineated by a record marking protocol. An
RDVA transport al so conveys RPC nessages in a uni que fashion that
must be fully described if client and server inplenentations are to

i nt eroperate.

RDVA transports present new semantics unlike the behaviors of either
UDP or TCP alone. They retain nessage delineations |ike UDP while
al so providing a reliable, sequenced data transfer |ike TCP. Al so,
they provide the new efficient, bulk-transfer service of RDVA. RDVA
transports are therefore naturally viewed as a new transport type by
RPC.

RDVA as a transport will benefit the perfornmance of RPC protocols
that nove | arge "chunks" of data, since RDMA hardware excels at
nmovi ng data efficiently between host nmenory and a hi gh-speed network
with little or no host CPU involvenent. |In this context, the Network
File System (NFS) protocol, in all its versions [RFCL094] [RFC1813]

[RFC3530] [RFC5661], is an obvious beneficiary of RDMA. A conplete
probl em statenent is discussed in [RFC5532], and rel ated NFSv4 issues
are discussed in [RFC5661]. Many ot her RPC-based protocols will also
benefit.

Al t hough the RDMA transport described here provides relatively
transparent support for any RPC application, the proposal goes
further in describing nmechanisns that can optimze the use of RDVA
with nore active participation by the RPC application.

Tal pey & Cal | aghan St andards Track [Page 3]

RFC 5666 RDVA Transport for RPC January 2010

1.1. Requirenments Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

2. Abstract RDMA Requirenents

An RPC transport is responsible for conveying an RPC nessage froma
sender to a receiver. An RPC nessage is either an RPC call froma
client to a server, or an RPC reply fromthe server back to the
client. An RPC nessage contains an RPC call header followed by
argunents if the nessage is an RPC call, or an RPC reply header
followed by results if the message is an RPC reply. The call header
contains a transaction ID (XID) followed by the program and procedure
nunber as well as a security credential. An RPC reply header begins
with an XID that nmatches that of the RPC call nessage, followed by a
security verifier and results. Al data in an RPC nessage is XDR
encoded. For a conplete description of the RPC protocol and XDR
encodi ng, see [RFC5531] and [RFC4506].

This protocol assunes the follow ng abstract nodel for RDVA
transports. These ternms, common in the RDVA | exicon, are used in
this docunment. A nore conplete glossary of RDVA terns can be found
in [RFC5040] .

0 Registered Menory
Al'l data noved via tagged RDVA operations is resident in
registered nmenory at its destination. This protocol assunes
that each segnent of registered nenory MJST be identified with a
steering tag of no nore than 32 bits and nmenory addresses of up
to 64 bits in Iength.

o RDVA Send
The RDVA provider supports an RDMA Send operation with
conpl etion signaled at the receiver when data is placed in a
pre-posted buffer. The anount of transferred data is limted
only by the size of the receiver’s buffer. Sends conplete at
the receiver in the order they were issued at the sender

o RDVA Wite
The RDVA provider supports an RDVA Wite operation to directly
pl ace data in the receiver’'s buffer. An RDVA Wite is initiated
by the sender and conpletion is signaled at the sender. No
conpletion is signaled at the receiver. The sender uses a
steering tag, nenory address, and length of the renote
destination buffer. RDVMA Wites are not necessarily ordered
with respect to one another, but are ordered with respect to

Tal pey & Cal | aghan St andards Track [Page 4]

RFC 5666 RDVA Transport for RPC January 2010

RDVA Sends; a subsequent RDMA Send conpl etion obtained at the
receiver guarantees that prior RDMA Wite data has been
successfully placed in the receiver’s nenory.

o RDVA Read
The RDVA provider supports an RDVA Read operation to directly
pl ace peer source data in the requester’'s buffer. An RDVA Read
is initiated by the receiver and conpletion is signaled at the
receiver. The receiver provides steering tags, nmenory
addresses, and a length for the renote source and | oca
destination buffers. Since the peer at the data source receives
no notification of RDMA Read conpl etion, there is an assunption
that on receiving the data, the receiver will signal conpletion
with an RDMA Send nessage, so that the peer can free the source
buffers and the associ ated steering tags.

This protocol is designed to be carried over all RDVA transports
nmeeting the stated requirenents. This protocol conveys to the RPC
peer information sufficient for that RPC peer to direct an RDVA | ayer
to performtransfers containing RPC data and to conmuni cate their
result(s). For exanple, it is readily carried over RDMA transports
such as Internet Wde Area RDVA Protocol (iWARP) [RFC5040, RFC5041],
or InfiniBand [IB].

3. Protocol Qutline

An RPC nmessage can be conveyed in identical fashion, whether it is a
call or reply nessage. |In each case, the transm ssion of the nmessage
proper is preceded by transm ssion of a transport-specific header for
use by RPC-over-RDVA transports. This header is anal ogous to the
record marki ng used for RPC over TCP, but is nore extensive, since
RDVA transports support several nodes of data transfer; it is

i mportant to allow the upper-layer protocol to specify the nost
efficient node for each of the segnents in a nessage. Miltiple
segnents of a nessage nmay thereby be transferred in different ways to
different renote nenory destinations.

Al'l transfers of a call or reply begin with an RDMA Send t hat
transfers at |east the RPC over- RDVA header, usually with the call or
reply nmessage appended, or at |east sone part thereof. Because the
size of what may be transnitted via RDMA Send is limted by the size
of the receiver’s pre-posted buffer, the RPC- over-RDVA transport

provi des a nunber of nethods to reduce the anount transferred by
means of the RDMA Send, when necessary, by transferring various parts
of the nessage using RDMA Read and RDVA Wite.

Tal pey & Cal | aghan St andards Track [Page 5]

RFC 5666 RDVA Transport for RPC January 2010

RPC- over - RDMA framing replaces all other RPC framing (such as TCP
record marki ng) when used atop an RPC/ RDMA associ ation, even though

t he underlying RDVA protocol may itself be layered atop a protocol
with a defined RPC fram ng (such as TCP). It is however possible for
RPC/ RDVA t o be dynami cally enabled, in the course of negotiating the
use of RDMA via an upper-|ayer exchange. Because RPC franing
delinmts an entire RPC request or reply, the resulting shift in

fram ng nust occur between distinct RPC nessages, and in concert with
the transport.

3.1. Short Messages

Many RPC nessages are quite short. For exanple, the NFS version 3
CETATTR request, is only 56 bytes: 20 bytes of RPC header, plus a
32-byte file handle argument and 4 bytes of length. The reply to
this common request is about 100 bytes.

There is no benefit in transferring such small nessages with an RDVA
Read or Wite operation. The overhead in transferring steering tags
and nenory addresses is justified only by large transfers. The
critical nessage size that justifies RDVMA transfer will vary

dependi ng on the RDMVA inplenentation and network, but is typically of
the order of a few kilobytes. It is appropriate to transfer a short
message with an RDVA Send to a pre-posted buffer. The RPC-over- RDVA
header with the short nessage (call or reply) imediately follow ng
is transferred using a single RDMA Send operation.

Short RPC nmessages over an RDVA transport:

RPC d i ent RPC Server

3.2. Data Chunks

Some protocols, like NFS, have RPC procedures that can transfer very
| arge chunks of data in the RPC call or reply and woul d cause the
maxi mum send size to be exceeded if one tried to transfer them as
part of the RDVA Send. These |arge chunks typically range froma

kil obyte to a nmegabyte or nore. An RDMA transport can transfer |arge
chunks of data nore efficiently via the direct placement of an RDVA
Read or RDMA Wite operation. Using direct placenent instead of
inline transfer not only avoi ds expensive data copies, but provides
correct data alignment at the destination.

Tal pey & Cal | aghan St andards Track [Page 6]

RFC 5666 RDVA Transport for RPC January 2010

3.3. Flow Control

It is critical to provide RDVA Send flow control for an RDVA
connection. RDMA receive operations will fail if a pre-posted
receive buffer is not available to accept an inconmi ng RDVA Send, and
repeat ed occurrences of such errors can be fatal to the connection
This is a departure fromconventional TCP/IP networking where buffers
are allocated dynanmically on an as-needed basis, and where
pre-posting is not required.

It is not practical to provide for fixed credit linmts at the RPC
server. Fixed linmts scale poorly, since posted buffers are

dedi cated to the associ ated connection until consunmed by receive
operations. Additionally, for protocol correctness, the RPC server
nmust always be able to reply to client requests, whether or not new
buffers have been posted to accept future receives. (Note that the
RPC server may in fact be a client at some other layer. For exanple,
NFSv4 cal | backs are processed by the NFSv4 client, acting as an RPC
server. The credit discussions apply equally in either case.)

Fl ow control for RDMA Send operations is inplenented as a sinple
request/grant protocol in the RPC over-RDVA header associated wth
each RPC nessage. The RPC-over-RDVA header for RPC call nessages
contains a requested credit value for the RPC server, which MAY be
dynanmically adjusted by the caller to nmatch its expected needs. The
RPC- over - RDMA header for the RPC reply nessages provides the granted
result, which MAY have any val ue except it MJST NOT be zero when no
i n-progress operations are present at the server, since such a val ue
woul d result in deadl ock. The value MAY be adjusted up or down at
each opportunity to match the server’s needs or policies.

The RPC client MJST NOT send unacknow edged requests in excess of
this granted RPC server credit limt. |If thelimt is exceeded, the
RDVA | ayer may signal an error, possibly term nating the connection
Even if an error does not occur, it is OPTIONAL that the server
handl e the excess request(s), and it MAY return an RPC error to the
client. Also note that the never-zero requirenent inplies that an
RPC server MJST al ways provide at |east one credit to each connected
RPC client fromwhich no requests are outstanding. The client would
deadl ock otherw se, unable to send anot her request.

While RPC calls conplete in any order, the current flow control linmt
at the RPC server is known to the RPC client fromthe Send ordering
properties. It is always the nost recent server-granted credit val ue

m nus the nunber of requests in flight.

Tal pey & Cal | aghan St andards Track [Page 7]

RFC 5666 RDVA Transport for RPC January 2010

Certain RDVA inplenentations may i npose additional flow contro
restrictions, such as linits on RDMA Read operations in progress at
the responder. Because these operations are outside the scope of
this protocol, they are not addressed and SHOULD be provided for by
other layers. For exanple, a sinple upper-layer RPC consuner m ght
perform singl e-i ssue RDVA Read requests, while a nore sophisticated
mul tithreaded RPC consuner might inplenent its own First In, First
Qut (FIFO queue of such operations. For further discussion of
possi bl e protocol inplenentations capable of negotiating these

val ues, see Section 6 "Connection Configuration Protocol" of this
docunent, or [RFC5661].

3.4. XDR Encodi ng with Chunks

The data conprising an RPC call or reply nmessage is marshal ed or
serialized into a contiguous stream by an XDR routine. XDR data
types such as integers, strings, arrays, and linked lists are
commonl y i nplenented over two very sinple functions that encode
either an XDR data unit (32 bits) or an array of bytes.

Normal Iy, the separate data items in an RPC call or reply are encoded
as a contiguous sequence of bytes for network transm ssion over UDP
or TCP. However, in the case of an RDVA transport, |ocal routines
such as XDR encode can deternmine that (for instance) an opaque byte
array is large enough to be nore efficiently noved via an RDMA data
transfer operation |ike RDMA Read or RDMA Wite.

Semantical ly speaking, the protocol has no restriction regarding data
types that nmay or may not be represented by a read or wite chunk

In practice however, efficiency considerations |ead to the concl usion
that certain data types are not generally "chunkable". Typically,
only those opaque and aggregate data types that may attain
substantial size are considered to be eligible. Wth today’s
hardware, this size may be a kilobyte or nore. However, any object
MAY be chosen for chunking in any given nmessage.

The eligibility of XDR data itenms to be candi dates for being noved as
data chunks (as opposed to being marshaled inline) is not specified
by the RPC-over-RDVA protocol. Chunk eligibility criteria MJST be
determ ned by each upper-layer in order to provide for an

i nteroperabl e specification. One such exanmple with rationale, for
the NFS protocol fanmily, is provided in [RFC5667].

The interface by which an upper-layer inplenmentation communicates the
eligibility of a data itemlocally to RPC for chunking is out of
scope for this specification. |In many inplenmentations, it is
possible to inplement a transparent RPC chunking facility. However,
such inplenmentations may lead to inefficiencies, either because they

Tal pey & Cal | aghan St andards Track [Page 8]

RFC 5666 RDVA Transport for RPC January 2010

require the RPC | ayer to perform expensive registration and
de-registration of nmenory "on the fly", or they may require using
RDVMA chunks in reply nmessages, along with the resulting additiona
handshaki ng with the RPC-over-RDMA peer. However, these issues are
internal and generally confined to the Iocal interface between RPC
and its upper layers, one in which inplenentations are free to

i nnovate. The only requirenent is that the resulting RPC RDVA
protocol sent to the peer is valid for the upper layer. See, for
exanpl e, [RFC5667] .

When sendi ng any nessage (request or reply) that contains an eligible
| arge data chunk, the XDR encoding routine avoids noving the data
into the XDR stream Instead, it does not encode the data portion
but records the address and size of each chunk in a separate "read
chunk list" encoded within RPC RDVA transport-specific headers. Such
chunks will be transferred via RDVA Read operations initiated by the
receiver.

When the read chunks are to be noved via RDMA, the nenory for each
chunk is registered. This registration may take place w thin XDR
itself, providing for full transparency to upper layers, or it may be
performed by any other specific local inplenentation

Addi tionally, when naking an RPC call that can result in bulk data
transferred in the reply, wite chunks MAY be provided to accept the
data directly via RDVA Wite. These wite chunks will therefore be
pre-filled by the RPC server prior to responding, and XDR decode of
the data at the client will not be required. These chunks undergo a
simlar registration and advertisenent via "wite chunk lists" built
as a part of XDR encodi ng.

Some RPC client inplenentations are not able to determ ne where an
RPC call’s results reside during the "encode" phase. This nmakes it
difficult or inpossible for the RPC client |ayer to encode the wite
chunk list at the time of building the request. 1In this case, it is
difficult for the RPC inplenentation to provide transparency to the
RPC consuner, which may require recoding to provide result
information at this earlier stage.

Therefore, if the RPC client does not make a wite chunk |i st
available to receive the result, then the RPC server MAY return data
inline in the reply, or if the upper-layer specification permts, it
MAY be returned via a read chunk list. It is NOT RECOMMVENDED t hat
upper-layer RPC client protocol specifications onmit wite chunk lists
for eligible replies, due to the | ower perfornance of the additiona
handshaki ng to performdata transfer, and the requirenment that the
RPC server nust expose (and preserve) the reply data for a period of

Tal pey & Cal | aghan St andards Track [Page 9]

RFC 5666 RDVA Transport for RPC January 2010

time. |In the absence of a server-provided read chunk list in the
reply, if the encoded reply overflows the posted receive buffer, the
RPC will fail with an RDVA transport error.

When any data within a nessage is provided via either read or wite
chunks, the chunk itself refers only to the data portion of the XDR
streamelenment. In particular, for counted fields (e.g., a "<>"
encodi ng) the byte count that is encoded as part of the field renains
in the XDR stream and is al so encoded in the chunk Iist. The data
portion is however elided fromthe encoded XDR stream and is
transferred as part of chunk list processing. It is inportant to

mai ntai n upper-|ayer inplenentation conpatibility -- both the count
and the data nust be transferred as part of the |ogical XDR stream
While the chunk list processing results in the data being avail able
to the upper-1layer peer for XDR decoding, the length present in the
chunk list entries is not. Any byte count in the XDR stream MJST

mat ch the sum of the byte counts present in the corresponding read or
write chunk list. |If they do not agree, an RPC protocol encoding
error results.

The following itens are contained in a chunk list entry.
Handl e

Steering tag or handl e obtai ned when the chunk nenory is
regi stered for RDVA

Length
The I ength of the chunk in bytes.
O fset
The of fset or beginning nenory address of the chunk. |n order

to support the w dest array of RDMA inplenentations, as well as
the nost general steering tag schenme, this field is
uncondi tionally included in each chunk list entry.

Whi |l e zero-based of fset schenes are available in nmany RDVA

i mpl enentations, their use by RPC requires individua
registration of each read or wite chunk. On many such

i mpl erent ations, this can be a significant overhead. By
providing an offset in each chunk, many pre-registration or
regi on-based registrations can be readily supported, and by
using a single, universal chunk representation, the RPC RDVA
protocol inplenentation is sinplified to its nost general form

Posi ti on
For data that is to be encoded, the position in the XDR stream
where the chunk would normally reside. Note that the chunk
therefore inserts its data into the XDR streamat this position

Tal pey & Cal | aghan St andards Track [Page 10]

RFC 5666 RDVA Transport for RPC January 2010

but its transfer is no longer "inline". Also note therefore
that all chunks belonging to a single RPC argument or result

wi Il have the sane position. For data that is to be decoded, no
position is used.

When XDR nmarshaling is conplete, the chunk list is XDR encoded, then
sent to the receiver prepended to the RPC nessage. Any source data
for a read chunk, or the destination of a wite chunk, renain behind
in the sender’s registered nmenory, and their actual payload is not
mar shal ed into the request or reply.

S S S

| RPC-over- RDVA | |

| header w/ | RPC Header | Non-chunk args/results
| chunks |

e e Fom e e e e e o oo

Read chunk lists and wite chunk lists are structured sonewhat
differently. This is due to the different usage -- read chunks are
decoded and i ndexed by their argunent’s or result’s position in the
XDR data streamy their size is always known. Wite chunks, on the
other hand, are used only for results, and have neither a preassigned
offset in the XDR streamnor a size until the results are produced
since the buffers may be only partially filled, or may not be used
for results at all. Their presence in the XDR streamis therefore
not known until the reply is processed. The mapping of write chunks
ont o designated NFS procedures and their results is described in

[RFC5667] .

Therefore, read chunks are encoded into a read chunk list as a single
array, with each entry tagged by its (known) size and its argunent’s
or result’s position in the XDR stream Wite chunks are encoded as
a list of arrays of RDMA buffers, with each list elenment (an array)

providing buffers for a separate result. Individual wite chunk Iist
el ements MAY thereby result in being partially or fully filled, or in
fact not being filled at all. Unused wite chunks, or unused bytes

in wite chunk buffer lists, are not returned as results, and their
menory is returned to the upper layer as part of RPC conpletion
However, the RPC | ayer MJUST NOT assune that the buffers have not been
nodi fi ed.

3.5. XDR Decoding with Read Chunks
The XDR decode process noves data froman XDR streaminto a data
structure provided by the RPC client or server application. \Were

el ements of the destination data structure are buffers or strings,
the RPC application can either pre-allocate storage to receive the

Tal pey & Cal | aghan St andards Track [Page 11]

RFC 5666 RDVA Transport for RPC January 2010

data or leave the string or buffer fields null and allow the XDR
decode stage of RPC processing to autonatically allocate storage of
sufficient size.

When decodi ng a nessage froman RDVA transport, the receiver first
XDR decodes the chunk lists fromthe RPC- over- RDVA header, then
proceeds to decode the body of the RPC nessage (argunents or
results). \Whenever the XDR offset in the decode stream matches that
of a chunk in the read chunk list, the XDR routine initiates an RDVA
Read to bring over the chunk data into locally registered nmenory for
the destination buffer

When processing an RPC request, the RPC receiver (RPC server)
acknow edges its conpletion of use of the source buffers by sinply
replying to the RPC sender (client), and the peer nmay then free all
source buffers advertised by the request.

When processing an RPC reply, after conpleting such a transfer, the
RPC receiver (client) MJST i ssue an RDMA DONE nessage (described in
Section 3.8) to notify the peer (server) that the source buffers can
be freed.

The read chunk list is constructed and used entirely within the

RPC/ XDR | ayer. O her than specifying the m ni nrum chunk size, the
managenent of the read chunk list is autonmatic and transparent to an
RPC appl i cati on.

3.6. XDR Decoding with Wite Chunks

When a wite chunk list is provided for the results of the RPC call
the RPC server MJST provide any corresponding data via RDMA Wite to
the menory referenced in the chunk list entries. The RPC reply
conveys this by returning the wite chunk list to the client with the
lengths rewitten to match the actual transfer. The XDR decode of
the reply therefore perforns no |ocal data transfer but merely
returns the length obtained fromthe reply.

Each decoded result consunmes one entry in the wite chunk Iist, which
in turn consists of an array of RDMA segnents. The length is
therefore the sumof all returned lengths in all segnments conprising
the corresponding list entry. As each list entry is decoded, the
entire entry i s consuned.

The wite chunk list is constructed and used by the RPC application

The RPC/ XDR | ayer sinply conveys the |ist between client and server
and initiates the RDMA Wites back to the client. The mapping of

Tal pey & Cal | aghan St andards Track [Page 12]

RFC 5666 RDVA Transport for RPC January 2010

wite chunk list entries to procedure argunents MJST be deterni ned
for each protocol. An exanple of a mapping is described in
[RFC5667] .

3.7. XDR Roundup and Chunks

The XDR protocol requires 4-byte alignnment of each new encoded
element in any XDR stream This requirenent is for efficiency and

ease of decode/unnmarshaling at the receiver -- if the XDR stream
buf f er begins on a native machi ne boundary, then the XDR el ements
wWill lie on simlarly predictable offsets in nmenory.

Wthin XDR, when non-4-byte encodes (such as an odd-length string or
bul k data) are narshaled, their length is encoded literally, while
their data is padded to begin the next elenent at a 4-byte boundary
in the XDR stream For TCP or RDMA inline encoding, this mninal
overhead is required because the transport-specific framng relies on
the fact that the relative offset of the elenents in the XDR stream
fromthe start of the nmessage deternines the XDR position during
decode.

On the other hand, RPC/ RDMA Read chunks carry the XDR position of
each chunked el ement and | ength of the Chunk segnent, and can be

pl aced by the receiver exactly where they belong in the receiver’'s
menory without regard to the alignnment of their position in the XDR
stream Since any rounded-up data is not actually part of the upper
| ayer’s message, the receiver will not reference it, and there is no
reason to set it to any particular value in the receiver’s nenory.

When roundup is present at the end of a sequence of chunks, the

I ength of the sequence will terninate it at a non-4-byte XDR
position. \When the receiver proceeds to decode the remaining part of
the XDR stream it inspects the XDR position indicated by the next

chunk. Because this position will not match (el se roundup woul d not
have occurred), the receiver decoding will fall back to inspecting
the remaining inline portion. |If in turn, no data renmains to be

decoded fromthe inline portion, then the receiver MJST concl ude that
roundup is present, and therefore it advances the XDR decode position
to that indicated by the next chunk (if any). In this way, roundup
is passed without ever actually transferring additional XDR bytes.

Sonme protocol operations over RPC/ RDMA, for instance NFS wites of
data encountered at the end of a file or in direct 1/0O situations,
commnly yield these roundups within RDMA Read Chunks. Because any
roundup bytes are not actually present in the data buffers being
written, menory for these bytes would come from nonconti guous
buffers, either as an additional nenory registration segment or as an
addi ti onal Chunk. The overhead of these operations can be

Tal pey & Cal | aghan St andards Track [Page 13]

RFC 5666 RDVA Transport for RPC January 2010

significant to both the sender to marshal them and even higher to the
receiver to which to transfer them Senders SHOULD therefore avoid
encodi ng indivi dual RDMA Read Chunks for roundup whenever possible

It is acceptable, but not necessary, to include roundup data in an
exi sting RDVA Read Chunk, but only if it is already present in the
XDR streamto carry upper-1layer data.

Note that there is no exposure of additional data at the sender due
to eliding roundup data fromthe XDR stream since any additiona
sender buffers are never exposed to the peer. The data is literally
not there to be transferred.

For RDMA Wite Chunks, a sinpler encoding nethod applies. Again
roundup bytes are not transferred, instead the chunk length sent to
the receiver in the reply is sinply increased to include any roundup
Because of the requirenment that the RDMA Wite Chunks are filled
sequentially w thout gaps, this situation can only occur on the fina
chunk receiving data. Therefore, there is no opportunity for roundup
data to insert msalignment or positional gaps into the XDR stream

3.8. RPC Call and Reply

The RDVA transport for RPC provides three nethods of noving data
between RPC client and server

Inline
Data is noved between RPC client and server within an RDMA Send

RDVA Read
Data is noved between RPC client and server via an RDVA Read
operation via steering tag; address and offset obtained froma
read chunk 1ist.

RDVA Wite
Result data is nmoved from RPC server to client via an RDVA Wite
operation via steering tag; address and offset obtained froma
wite chunk list or reply chunk in the client’s RPC cal
nessage

These net hods of data novenment may occur in combinations within a
single RPC. For instance, an RPC call may contain sone inline data
along with sone |arge chunks to be transferred via RDVA Read to the
server. The reply to that call may have sone result chunks that the
server RDMA Wites back to the client. The follow ng protocol
interactions illustrate RPC calls that use these nethods to nove RPC
nmessage dat a:

Tal pey & Cal | aghan St andards Track [Page 14]

RFC 5666 RDVA Transport for RPC January 2010

An RPC with wite chunks in the call nessage:

RPC d i ent RPC Server
| RPC Call + Wite Chunk I|ist |
Send | --------io-mmoei i > |
| |
| Chunk 1 |
| e | Wite
| 2 |
| Chunk n |
| i | Wite
| |
| RPC Reply |
| e R | Send

In the presence of wite chunks, RDMA ordering provides the guarantee
that all data in the RDMA Wite operations has been placed in menory
prior to the client’s RPC reply processing.

An RPC with read chunks in the call nessage:

RPC d i ent RPC Server

| RPC Call + Read Chunk i st |

Send | -----memmiie e > |
| |
| Chunk 1 |
| R i | Read
| A e > |
| 2 |
| Chunk n |
| e | Read
| B e > |
| |
| RPC Reply |
| e | Send

Tal pey & Cal | aghan St andards Track [Page 15]

RFC 5666 RDVA Transport for RPC January 2010

An RPC with read chunks in the reply nessage:

RPC d i ent RPC Server

| RPC Cal | |
Send | --------io-mmoei i > |

| |

| RPC Reply + Read Chunk i st |

| e R | Send

| |

| Chunk 1 |
Read | -----------mmmmi e - +

| e v |

| : |

| Chunk n |
Read | --------mmmmmm i +

| O Y |

| |

| Done |
Send | ------emmeiie e > |

The final Done nmessage allows the RPC client to signal the server
that it has received the chunks, so the server can de-register and
free the nmenory hol ding the chunks. A Done conpletion is not
necessary for an RPC call, since the RPCreply Send is itself a
receive conpletion notification. 1In the event that the client fails
to return the Done nessage within sone tinmeout period, the server MAY
conclude that a protocol violation has occurred and cl ose the RPC
connection, or it MAY proceed with a de-register and free its chunk
buffers. This may result in a fatal RDVA error if the client |ater
attenpts to performan RDVA Read operation, which anounts to the sanme
t hi ng.

The use of read chunks in RPC reply nessages is nuch | ess efficient
than providing wite chunks in the originating RPC calls, due to the
addi ti onal nmessage exchanges, the need for the RPC server to
advertise buffers to the peer, the necessity of the server

mai ntaining a timer for the purpose of recovery from ni sbehavi ng
clients, and the need for additional nmenory registration. Their use
i s NOI RECOMVENDED by upper |ayers where efficiency is a primary
concern [RFC5667]. However, they MAY be enpl oyed by upper-Iayer
protocol bindings that are primarily concerned with transparency,
since they can frequently be inplenented conpletely within the RPC

| ower | ayers.

It is inmportant to note that the Done nessage consunes a credit at
the RPC server. The RPC server SHOULD provide sufficient credits to
the client to allow the Done nessage to be sent w thout deadl ock
(driving the outstanding credit count to zero). The RPC client MJST

Tal pey & Cal | aghan St andards Track [Page 16]

RFC 5666 RDVA Transport for RPC January 2010

account for its required Done nessages to the server inits
accounting of available credits, and the server SHOULD repl eni sh any
credit consuned by its use of such exchanges at its earliest
opportunity.

Finally, it is possible to conceive of RPC exchanges that involve any
or all conbinations of wite chunks in the RPC call, read chunks in
the RPC call, and read chunks in the RPC reply. Support for such
exchanges is straightforward froma protocol perspective, but in
practice such exchanges would be quite rare, linted to upper-|ayer
prot ocol exchanges that transferred bulk data in both the call and
correspondi ng reply.

3.9. Padding

Alignment of specific opaque data enables certain scatter/gather
optim zations. Padding |everages the useful property that RDVA
transfers preserve alignnent of data, even when they are placed into
pre-posted receive buffers by Sends.

Many servers can make good use of such padding. Padding allows the
chai ni ng of RDMA receive buffers such that any data transferred by
RDVA on behal f of RPC requests will be placed into appropriately
aligned buffers on the systemthat receives the transfer. 1In this
way, the need for servers to perform RDVA Read to satisfy all but the
| argest client wites is obviated.

The effect of padding is denonstrated bel ow showi ng prior bytes on an
XDR stream ("XXX" in the figure below) followed by an opaque field
consisting of four length bytes ("LLLL") foll owed by data bytes
("DDD'). The receiver of the RDMA Send has posted two chai ned
receive buffers. Wthout padding, the opaque data is split across
the two buffers. Wth the addition of padding bytes ("ppp") prior to
the first data byte, the data can be forced to align correctly in the
second buffer.

Buffer 1 Buffer 2
Unpadded e e
XXXXXXXLL L L DDDDDDDDDDDDDD ---> XXXXXXXLLLLDDD DDDDDDDDDDD
Padded

XXXXXXXLLLLpppDDDDDDDDDDDDDD - - - > XXXXXXXLLLLppp DDDDDDDDDDDDDD

Tal pey & Cal | aghan St andards Track [Page 17]

RFC 5666 RDVA Transport for RPC January 2010

Padding is inplenented conpletely within the RDMA transport encodi ng,
flagged with a specific nessage type. Wiere padding is applied, two
val ues are passed to the peer: an "rdma_align", which is the padding
val ue used, and "rdnma_t hresh", which is the opaque data size at or
above which padding is applied. For instance, if the server is using
chained 4 KB receive buffers, then up to (4 KB - 1) paddi ng bytes
could be used to achieve alignnent of the data. The XDR routine at
the peer MJST consult these val ues when decodi ng opaque val ues.

Where the decoded | ength exceeds the rdma_thresh, the XDR decode MJST
skip over the appropriate padding as indicated by rdma_align and the
current XDR stream position.

4. RPC RDVA Message Layout

RPC call and reply nmessages are conveyed across an RDMA transport
with a prepended RPC-over-RDVA header. The RPC-over- RDVMA header

i ncludes data for RDVA flow control credits, padding paraneters, and
lists of addresses that provide direct data placenent via RDVA Read
and Wite operations. The |layout of the RPC nessage itself is
unchanged fromthat described in [RFC5531] except for the possible
excl usion of large data chunks that will be noved by RDVA Read or
Wite operations. |If the RPC nmessage (along with the RPC- over- RDVA
header) is too long for the posted receive buffer (even after any

| arge chunks are renoved), then the entire RPC nessage MAY be noved
separately as a chunk, |eaving just the RPC over-RDVMA header in the
RDVA Send.

4. 1. RPC- over - RDMA Header

The RPC-over- RDMA header begins with four 32-bit fields that are

al ways present and that control the RDMVA interaction including RDVA-
specific flow control. These are then followed by a nunber of itens
such as chunk lists and paddi ng that MAY or MJST NOT be present
dependi ng on the type of transnmission. The four fields that are

al ways present are:

1. Transaction ID (XID).
The XI D generated for the RPC call and reply. Having the XID at
t he begi nning of the nessage nakes it easy to establish the
nmessage context. This XID MJST be the sane as the XID in the RPC
header. The receiver MAY performits processing based solely on
the XID in the RPC-over-RDVA header, and thereby ignore the XID in
the RPC header, if it so chooses.

2. Version nunber.
This version of the RPC RDVA nessage protocol is 1. The version
nunber MUST be increased by 1 whenever the format of the RPC RDVA
nmessages i s changed.

Tal pey & Cal | aghan St andards Track [Page 18]

RFC 5666 RDVA Transport for RPC January 2010

3. Flow control credit val ue.
When sent in an RPC call nessage, the requested val ue is provided.
Wien sent in an RPC reply nessage, the granted val ue is returned.
RPC calls SHOULD NOT be sent in excess of the currently granted
limt.

4. Message type.
o RDVA MSG = 0 indicates that chunk lists and RPC nessage foll ow

0o RDVA NOVMSG = 1 indicates that after the chunk lists there is no
RPC nessage. In this case, the chunk lists provide information
to allow the nmessage proper to be transferred usi ng RDMA Read
or Wite and thus is not appended to the RPC-over-RDMA header.

o RDVA MSGP = 2 indicates that a chunk list and RPC nessage with
some paddi ng foll ow.

o RDVA DONE = 3 indicates that the nessage signals the conpletion
of a chunk transfer via RDVA Read.

0o RDVA ERROR = 4 is used to signal any detected error(s) in the
RPC RDMA chunk encodi ng.

Because t he version nunber is encoded as part of this header, and the
RDVMA_ERROR nmessage type is used to indicate errors, these first four

fields and the start of the foll ow ng nmessage body MJST al ways renain
aligned at these fixed offsets for all versions of the RPC over- RDVA
header .

For a nmessage of type RDVMA MSG or RDVA NOVEG the Read and Wite
chunk lists follow |If the Read chunk list is null (a 32-bit word of
zeros), then there are no chunks to be transferred separately and the

RPC nessage follows in its entirety. |If non-null, then it’'s the
begi nni ng of an XDR encoded sequence of Read chunk list entries. |If
the Wite chunk list is non-null, then an XDR encoded sequence of

Wite chunk entries foll ows.

If the message type is RDMA_ MSGP, then two additional fields that
specify the padding alignnment and threshold are inserted prior to the
Read and Wite chunk Iists.

A header of nessage type RDVA MSG or RDVA MBGP MUST be fol |l owed by

the RPC call or RPC reply nessage body, beginning with the XID. The
XID in the RDVA_MSG or RDVA MSGP header MJST match this.

Tal pey & Cal | aghan St andards Track [Page 19]

RFC 5666 RDVA Transport for RPC January 2010

oo e oo e oo oo - SRR
| | | | Message | NULLs | RPC Call

| XID | Version | Credits | Type | or | or

| | | | | Chunk Lists | Reply Msg
Fom e e e - Fomm e e o Fomm e e o S B S Fom e e -

Note that in the case of RDMA DONE and RDMA ERROR, no chunk list or
RPC nessage follows. As an inplenentation hint: a gather operation
on the Send of the RDMA RPC nmessage can be used to marshal the
initial header, the chunk Iist, and the RPC nessage itself.

4,2. RPC-over-RDVA Header Errors

When a peer receives an RPC RDVA nessage, it MJST performthe

followi ng basic validity checks on the header and chunk contents. |f
such errors are detected in the request, an RDMA ERROR reply MJIST be
gener at ed.

Two types of errors are defined, version nmismatch and invalid chunk
format. When the peer detects an RPC- over- RDMA header version that
it does not support (currently this docunent defines only version 1),
it replies with an error code of ERR VERS, and provides the | ow and
hi gh inclusive version nunbers it does, in fact, support. The
versi on nunber in this reply MIST be any val ue otherwise valid at the
receiver. Wen other decoding errors are detected in the header or
chunks, either an RPC decode error MAY be returned or the RPC/ RDVA
error code ERR_CHUNK MJST be returned

4.3. XDR Language Descri ption
Here is the nessage |ayout in XDR | anguage.

struct xdr_rdma_segnent {

ui nt 32 handl e; /* Registered nenory handle */

ui nt 32 | engt h; /* Length of the chunk in bytes */

ui nt 64 of fset; /* Chunk virtual address or offset */
i
struct xdr_read_chunk {

ui nt 32 position; /* Position in XDR stream */

struct xdr_rdma_segnent target;
i

struct xdr_read list {
struct xdr_read_chunk entry;
struct xdr _read |ist *next;

H

Tal pey & Cal | aghan St andards Track [Page 20]

RFC 5666 RDVA Transport for RPC January 2010

struct xdr_wite _chunk {
struct xdr_rdma_segnment target<>;
s

struct xdr_wite list {
struct xdr_wite _chunk entry;
struct xdr_ wite |list *next;

s

struct rdma_nsg {
ui nt 32 rdma_xi d; /* Mrrors the RPC header xid */
ui nt 32 rdnma_vers; /* Version of this protocol */
ui nt 32 rdnma_credit; /* Buffers requested/ granted */
rdma_body rdnma_body;

s

enum rdma_proc {
RDVA MBG=0, /* An RPC call or reply nsg */
RDVA NOVBG=1, /* An RPC call or reply nsg - separate body */
RDVA_MSGP=2, /* An RPC call or reply msg with padding */
RDMA DONE=3, /* Cient signals reply conpletion */
RDVMA ERROR=4 /* An RPC RDMA encoding error */

b
uni on rdma_body switch (rdma_proc proc) {
case RDVA MG
rpc_rdma_header rdma_nsg;
case RDMA NOVBG
rpc_rdma_header _nonsg rdnme_nonsg;
case RDVA MSGP:
rpc_rdnma_header padded rdnma_nsgp;
case RDVA DONE:
voi d;
case RDVMA ERROR
rpc_rdma_error rdma_error;
b

struct rpc_rdma_header